• Randall-Sundrum Cosmology and Dp-Brane Dynamics

    Let me work in the large-warped Randall-Sundrum D-brane scenario and consider how an {S^1}/{Z_2} orbifolding leads to a non-singular cosmic bounce on the brane thus alleviating the rip of the big-bang singularity. The Randall-Sundrum 5-D braneworld action is:

        \[\begin{array}{*{20}{c}}{S = \int {{d^5}} x\sqrt { - {g_{\left( 5 \right)}}} \left[ {{M^3}{R_{\left( 5 \right)}} - \Lambda } \right]}\\{ + \int {{d^4}x} \sqrt { - {g_{\left( 4 \right)}}} {\rm{ \tilde L}}_{Brane}^{{\rm{large}}}}\end{array}\]

    M the 5-D Planck mass, {M^3} = 1/\left( {16\pi {G_5}} \right), and \Lambda the cosmological constant in the bulk, yielding the metric on the brane:

        \[\begin{array}{c}d{s^2} = {e^{ - 2\left| y \right|/L}}\left[ {{\eta _{\mu \nu }} + {h_{\mu \nu }}\left( {x,y} \right)} \right] \cdot \\d{x^\mu }d{x^\nu } + d{y^2}\end{array}\]

    with L being the radius of AdS, defined by:

        \[R_{MNPQ}^{\left( 5 \right)} = - \frac{1}{{{L^2}}}\left( {g_{MP}^{\left( 5 \right)}g_{NQ}^{\left( 5 \right)} - g_{MQ}^{\left( 5 \right)}g_{NP}^{\left( 5 \right)}} \right)\]

    thus allowing us to derive the CFT-brane relation:

        \[\begin{array}{l}{h_{\mu \nu }}\left( p \right) = - \frac{2}{{L{M^3}}}{\Delta _3}\left[ {{T_{\mu \nu }}\left( p \right) - \frac{1}{2}{\eta _{\mu \nu }}{T^\alpha }_\alpha \left( p \right)} \right]\\ - \frac{1}{{{M^3}}}{\Delta _{KK}}\left( p \right)\left[ {{T_{\mu \nu }}\left( p \right) - \frac{1}{3}{\eta _{\mu \nu }}{T^\alpha }_\alpha \left( p \right)} \right]\end{array}\]

    where the dynamics of N-parallel topologically intersecting Dp-branes with gauge group U\left( N \right) is:

        \[\begin{array}{l}S = - \frac{{{T_p}{g_s}{{\left( {2\pi \alpha '} \right)}^2}}}{4}\int {{{\rm{d}}^{p + 1}}} \xi {\rm{tr}}\left( {{F_{ab}}{F^{ab}} + } \right.\\2{D_a}{\Phi ^m}{D^a}{\Phi _m} + \sum\limits_{m \ne n} {{{\left[ {{\Phi ^m},{\Phi ^n}} \right]}^2} + \left. {{\rm{fermions}}} \right)} \end{array}\]

    with the Yang-Mills potential

  • The Lindblad Master Equation, Feynman-Kac Formula, and the Measurement Problem

    Any adequate account of how micro-causality and quantum coherence can explain the emergent-property of spacetime and how the Wheeler-DeWitt problem of time can be solved must incorporate a theory of how the Lindblad master equation solves the Markov quantum fluctuation problem as well as showing how the quantum Jarzynski-Hatano-Sasa relation can be homologically defined globally for both, Minkowski space and Friedmann-Robertson-Walker generalized Cartan space-times. This is a step towards those goals. Consider a wave-function \left| {{\psi _t}^{S,m,c}} \right\rangle and the entropic quantum entanglement relation of the total system consisting of ‘S’, ‘m’ and the quantum-time measuring clock ‘c’ subject to Heisenberg’s UP. It follows then that the probability that any given initial state \left| {\psi _t^{S,m,c}} \right\rangle evolves for a time T that undergoes N jumps during intervals \delta t centered at times {t_1},...,{t_N} is given by:

        \[\begin{array}{l}{\left( {2\delta t{\kappa ^2}/G} \right)^N}{\rm{Tr}}\left\{ {{e^{ - i{{\tilde H}_{eff}}\left( {T - {t_N}} \right)}}} \right. \cdot \\\hat a{e^{ - i{{\hat H}_{eff}}}}\left( {{t_N} - {t_{N - 1}}} \right)\hat a...\,\hat a{e^{ - i{{\hat H}_{eff}}t}}\\ \times \left| {\psi _t^{S,m,c}} \right\rangle \left\langle {\psi _t^{S,m,c}} \right|{e^{i{{\tilde H}^\dagger }_{eff}{t_1}}}{{\hat a}^\dagger }...\,\left. {{{\hat a}^\dagger }{e^{i{{\tilde H}^\dagger }_{eff}\left( {T - {t_N}} \right)}}} \right\}\end{array}\]

    So, the master equation:

        \[\begin{array}{l}{{\dot \rho }_{00}} = - i\left[ {{{\hat H}_0},{\rho _{00}}} \right] + \frac{{2{\kappa ^2}}}{G}\hat a{\rho _{00}}{{\hat a}^\dagger }\\ - \frac{{{\kappa ^2}}}{G}{{\hat a}^\dagger }\hat a{\rho _{00}} - \frac{{{\kappa ^2}}}{G}{\rho _{00}}{{\hat a}^\dagger }\hat a\end{array}\]

    is valid iff the Markovian approximation is faithful and valid only on time-scales longer than 1/{\Gamma _1}, hence the jump occurs during an interval \delta t \sim 1/{\Gamma _1} centered on {t_i}. Therefore, with the Hamiltonian:

        \[{\hat H_I} = \kappa \left( {{{\hat a}^\dagger } \otimes \hat b + \hat a \otimes {{\hat b}^\dagger }} \right)\]

    where \left( {\hat a,\hat b} \right);\left( {{{\hat a}^\dagger },{{\hat b}^\dagger }} \right) are the lowering/raising operators for the system and output mode respectively, it follows that the total system satisfies the master equation:

        \[\begin{array}{c}\dot \rho = - i\left[ {\hat H,\rho } \right] + {\Gamma _1}\hat b\rho {{\hat b}^\dagger } - \frac{{{\Gamma _1}}}{2}{{\hat b}^\dagger }\hat b\rho \\ - \frac{{{\Gamma _1}}}{2}\rho {{\hat b}^\dagger }\hat b + {\Gamma _2}{\sigma _z}\rho {\sigma _z} - {\Gamma _2}\rho \\ \equiv L_s^L\rho \end{array}\]

    where the Pauli operator {\sigma _z} acts on the output mode and L_s^L is the Liouville superoperator. Given that it is a linear equation, it has a solution given as:

        \[\rho ({t_2}) = \exp \left\{ {L_s^L\left( {{t_2} - {t_1}} \right)} \right\}\rho ({t_1})\]

    and so the evolution of the density matrix {\rho _t} is given by the Lindblad master equation:

        \[\begin{array}{l}{\partial _t}{\rho _t} = - i\left[ {{H_t},{\rho _t}} \right] + \sum\limits_{i = 1}^I {\left( {{V_i}{\rho _t}V_i^\dagger } \right.} \\\left. { - \frac{1}{2}V_i^\dagger {V_i}{\rho _t} - \frac{1}{2}{\rho _t}V_i^\dagger {V_i}} \right)\end{array}\]