In this post, the mathematics applies to both, Randall-Sundrum-1and-2 models, hence I will not distinguish between them here. One of the most powerful aspects of M-theory’s braneworld scenarios is that the bosonic and fermionic fields of the Standard Model of physics can be interpreted as low-lying Kaluza-Klein excitations of Randall-Sundrum bulk fields, after extra dimensional modulus stabilization, and recalling that Randall-Sundrum bulk/brane interactions yield a very deep solution to the EW hierarchy problem. Start with the theory defined by the following action:

with the bulk field given by:

where generally, the bulk action, with worldsheet-uplift, is given by:

and satisfying:

with a Dirac-Born-Infeld brane interaction term:

which, after integration by parts and upon substituting in our action, we get the Horava-Witten action variant:

Now, the bulk fields manifest themselves to 4-D ‘observers’ as infinite towers of scalars with masses . After change of variables to:

our actions reduce to two interaction terms:

and:

where we have:

and the Bessel functions of order:

yield the standard Bertotti-Robinson-solutions. Hence, we have:

with a normalization factor. That the differential operator on the LHS of:

is self-adjoint means that the derivative of is continuous at the orbifold fixed points, giving us:

Four-dimensionally, these induce couplings between the Kaluza-Klein modes and so the exponential factor in:

where are Lorentz coordinates on the four-dimensional surfaces of constant thus plays an essential role in determining the effective scale of the couplings. If the Planck scale sets the scale of the five-dimensional couplings, the low-lying Kaluza-Klein modes will have TeV-range self-interactions.

Now, a Klebanov-Strassler geometry naturally arises by considering string theory compactification on where is the Einstein manifold in five dimensions, with the interaction-Lagrangian of the massless Klebanov-Strassler field and the brane fields fermions is:

which, after integrating over the extra dimensional part, the effective 4-D Lagrangian reduces to:

with the fundamental Planck scale and the 4-D Planck scale related as

Hence, in light of the Klebanov-Strassler/Randall-Sundrum throat-bulk isomorphism, this defines a background geometry given by:

with and the induced metric on the hidden and visible brane-sectors, the 5-D metric, with the 5-D Planck scale, the cosmological ‘constant’, the scalar field and the corresponding potential.

Working in the -warp-factor metric:

the corresponding 5-D Einstein and scalar field equations are:

and

with the index over the branes and our boundary-conditions of and are given by:

To analytically solve in the backreacted Randall-Sundrum model-type, we use the quadratic/quartic bulk/brane dualized potential:

with:

Now we can derive solutions:

where is the scalar field on the Planck brane. Hence, and are given by:

and

We can now address the modulus stability of the braneworld. Substituting into:

gives us the 4-D potential for the radion:

One then achieves inter-brane stabilization by minimizing the above potential with respect to the radion:

Hence, for the modulus field , the stabilization condition is:

Note now, in a backreacted RS model,

has no minima that is consistent with inflationary coupling-running. Thus, a quartic term of the …

## Social Networks