Sign up with your email address to be the first to know about new products, VIP offers, blog features & more.

The AdS/Super-CFT Randall–Sundrum Brane-World Duality

We are not to tell nature what she’s gotta be. She’s always got better imagination than we have ~ Richard Feynman

In this post, I will relate the AdS/CFT correspondence to the Randall-Sundrum brane-world ‘model’. The AdS/CFT correspondence ‘says’ that for every conformal field theory, there is a corresponding theory of gravity with one more dimension. More precisely, it is a correspondence between the gravitational dynamics of a  d + 1dimensional anti-de Sitter spacetime Ad{S_{d + 1}}, and a ddimensional conformal field theory CF{T_d}, so the duality basically says that if we deform CF{T_d} by source fields by adding

    \[\int {{d^d}} x\,J(x)\vartheta (x)\]

this will be the dual to an Ad{S_{d + 1}} theory with a bulk field J with boundary condition:

    \[\underbrace {\lim }_{boundary}J\,{w^{\Delta - d + k}} = {J_{CFT}}\]

with \Delta the conformal dimension of the local operator \vartheta and k the number of covariant indices of \vartheta minus the number of contravariant indices. Hence, we get a dual source field for every gauge-invariant local operator and can deduce the duality as

    \[{\left\langle {T\left\{ {\exp \left( {\int {{d^d}x\,{J_{4D}}(x)\vartheta (x)} } \right)} \right\}} \right\rangle _{CFT}} = {\not Z_{AdS}}\left[ {\underbrace {\lim }_{boundary}J\,{w^{\Delta - d + k}} = {J_{4D}}} \right]\]

or more informatively

    \[{\left\langle {{e^{\int {{d^4}x\,{\phi _{(0)}}(x)\vartheta (x)} }}} \right\rangle _{CFT}} = {\not Z_{{\rm{String}}}}\left\langle {{r^{\Delta - d}}\phi {{(x,r)}_{\left| {_{r = 0}} \right.}} = {\phi _{(0)}}(x)} \right\rangle \]

where \phi (x,r) is the ‘bulk-field‘, r the radial coordinate that is dual to the renormalization group in the boundary theory, with

    \[{\phi _{(0)}}(x) \equiv {r^{\Delta - d}}\phi {(x,r)_{\left| {_{r = 0}} \right.}}\]

and r = 0 in the CFT boundary of AdS with {\phi _{(0)}}(x) coupled to \vartheta (x)

The left-hand-sides are the vacuum expectation value of the time-ordered exponential of the operators over CFT; the right-hand-sides are the quantum gravity generating functional with the given conformal boundary condition. So, on one side, we have a gauge theory in flat space-time at weak coupling and as the coupling increases, the theory must be described as a string-theory in curved space-time.  So generally for d = n, the Maldacena conjecture, based on the decoupling limit of Dn - 1-branes in type IIB string theory compactified on {S^{n + 1}}, relates the dynamics of Ad{S_{n + 1}} to an N = n superconformal U(N) Yang–Mills theory on its n-dimensional boundary. Before I continue, keep this 5-D brane-world action in mind throughout:

    \[\begin{array}{c}S = \int {{d^5}} x\sqrt { - {g_{\left( 5 \right)}}} \left[ {{M^3}{R_{\left( 5 \right)}} - \Lambda } \right]\\ + \int {{d^4}x} \sqrt { - {g_{\left( 4 \right)}}} \widetilde {\not L}_{{\rm{BRANE}}}^{{\rm{Lag}}}\end{array}\]

Now, different compactifications lead to other SuperCFTs on the boundary. For d = 4, picking the Poincaré coordinates on Ad{S_5} yields the metric

    \[d{s^2} = {e^{ - 2y/L}}{\left( {d{x^\mu }} \right)^2} + d{y^2}\]

where in that scenario, the superconformal Yang–Mills theory would reside at the boundary y \to - \infty. The Randall–Sundrum models a possible scenario for evading Kaluza–Klein compactification by localizing gravity in the presence of an uncompactified extra dimension via an insertion of a positive tension 3-brane, quasi-morphic to Einsteinian space-time, into Ad{S_5}. The resulting Randall–Sundrum metric is then

    \[d{s^2} = {e^{ - 2\left| y \right|/L}}{\left( {d{x^\mu }} \right)^2} + d{y^2}\]

with y \in \left( { - \infty ,\infty } \right) or y \in \left[ {0,\infty } \right) for a 2-sided or 1-sided Randall–Sundrum brane, respectively. So to make a Maldacena/Randall–Sundrum correspondence, let me work with the one-sided Randall–Sundrum brane, and imposing a boundary in Ad{S_5} at y = 0, the RS-model is hypothesized to be dual to a cut-off CFT coupled to gravity, with y = 0, the location of the Randall–Sundrum brane, providing the ultraviolet cut-off. Hence, this ‘super’-Maldacena conjecture reduces to the standard AdS/CFT-duality as the boundary is pushed off to y \to - \infty, thus the cut-off is removed and gravity gets completely decoupled. Given that one-loop corrections to the graviton propagator induce 1/{r^3} corrections to the gravitational potential

    \[V(r) = \frac{{G{m_1}{m_2}}}{r}\left( {1 + \frac{{\alpha G}}{{{r^2}}}} \right)\]

where G is the four-dimensional Newton constant, one can see that the contribution of a single CFT, with \left( {{N_1},{N_{1/2}},{N_0}} \right) = \left( {{N^2},4{N^2},6{N^2}} \right), is (1)

    \[V(r) = \frac{{G{m_1}{m_2}}}{r}\left( {1 + \frac{{2{N^2}G}}{{3\pi {r^2}}}} \right)\]

with {N_s} being the numbers of particle-species of spin s going around the loop. Hence, via the AdS/CFT relation {N^2} = \pi {L^3}/2{G_5} and the 1-sided brane-world relation G = 2{G_5}/L, with {G_5} being the five-dimensional Newtonian constant and L the radius of Ad{S_5}, it reduces to (2)

    \[V(r) = \frac{{G{m_1}{m_2}}}{r}\left( {1 + \frac{{2{L^2}}}{{3{r^2}}}} \right)\]

Let’s deduce (1) by lowest-order quantum corrections to solutions of Einstein’s equations. Working with linearized gravity, we begin by writing the metric as

    \[{g_{\mu \nu }} = {\eta _{\mu \nu }} + {h_{\mu \nu }}\]

hence,

    \[\sqrt { - g} {g^{\mu \nu }} \equiv {\widetilde g^{\mu \nu }} = {\eta ^{\mu \nu }} - {\widetilde h^{\mu \nu }} + ...\]

with

    \[{\widetilde h_{\mu \nu }} = {h_{\mu \nu }} - \frac{1}{2}{\eta _{\mu \nu }}{h^\alpha }_\alpha \]

Given the harmonic gauge(s)

    \[\left\{ {\begin{array}{*{20}{c}}{{{\not \partial }_\mu }{{\widetilde g}^{\mu \nu }} = 0}\\{{{\not \partial }_\mu }{{\widetilde h}^{\mu \nu }} = 0}\end{array}} \right.\]

the linearized Einstein equation is then

    \[{\overline {\not \Theta } _{dA}}\widetilde h_{\mu \nu }^c(x) = - 16\pi G{T_{\mu \nu }}(x)\]

Fourier transformation to momentum space yields

    \[\widetilde h_{\mu \nu }^c\left( p \right) = - 16\pi G{\Delta _4}\left( p \right){T_{\mu \nu }}\left( p \right)\]

with 

    \[{\Delta _4}\left( p \right) = - 1/{p^2}\]

 being the four-dimensional massless scalar propagator. Thus, the quantum-corrected metric becomes

    \[{\widetilde h_{\mu \nu }} = \widetilde h_{\mu \nu }^c + \widetilde h_{\mu \nu }^q\]

and the quantum correction \widetilde h_q^{\mu \nu } is given in momentum space by

    \[\begin{array}{c}\widetilde h_q^{\mu \nu }\left( p \right) = {{\not D}^{\mu \nu \alpha \beta }}\left( p \right) \cdot \\\prod {_{\mu \nu \gamma \delta }} \left( p \right)\widetilde h_c^{\gamma \delta }\left( p \right)\end{array}\]

where {\not D^{\mu \nu \alpha \beta }} is the graviton propagator

    \[{\not D^{\mu \nu \alpha \beta }}\left( p \right) = \frac{1}{2}{\Delta _4}\left( p \right)\left( {{\eta ^{\mu \alpha }}{\eta ^{\mu \beta }} + {\eta ^{\mu \beta }}{\eta ^{\nu \alpha }} - {\eta ^{\mu \nu }}{\eta ^{\alpha \beta }} + ...} \right)\]

and \prod {_{\alpha \beta \gamma \delta }} is the one-loop graviton self-energy, which by gauge-symmetry and Lorentz invariance necessarily is

    \[\begin{array}{l}\prod {_{\alpha \beta \gamma \delta }} \left( p \right) = {p^4}\left[ {\prod {_1\left( {{p^2}} \right)} } \right.{\eta _{\alpha \beta }}{\eta _{\gamma \delta }} + \\\prod {_2} \left( {{p^2}} \right)\left( {{\eta _{\alpha \gamma }}{\eta _{\beta \delta }} + {\eta _{\alpha \delta }}{\eta _{\beta \gamma }}} \right) + \\\prod {_3} \left( p \right)\left( {{\eta _{\alpha \beta }}{{\widehat p}_\gamma }{{\widehat p}_\delta } + {\eta _{\gamma \delta }}{{\widehat p}_\alpha }{{\widehat p}_\beta }} \right) + \\\prod {_4} \left( {{p^2}} \right)\left( {{\eta _{\alpha \gamma }}{{\widehat p}_\beta }{{\widehat p}_\delta } + {\eta _{\alpha \delta }}{{\widehat p}_\beta }{{\widehat p}_\gamma } + {\eta _{\beta \gamma }}{{\widehat p}_\alpha }{{\widehat p}_\delta } + {\eta _{\beta \delta }}{{\widehat p}_\alpha }{{\widehat p}_\gamma }} \right) + \\\prod {_5} \left( {{p^2}} \right){\widehat p_\alpha }{\widehat p_\beta }{\widehat p_\gamma }\left. {{{\widehat p}_\delta }} \right]\end{array}\]

hence, by combining, we get the quantum-corrected metric

    \[\begin{array}{c}h_{\mu \mu }^q\left( p \right) = - {p^2}\left[ {2\prod {_2\left( p \right)} } \right.\delta _\mu ^\alpha \delta _\nu ^\beta \\ + \prod {_1} \left( p \right){\eta _{\mu \nu }}{\eta ^{\alpha \beta }} + \\\left( {\prod {_3\left( p \right) + ...} } \right){\widehat p_\mu }{\widehat p_\nu }\left. {{\eta ^{\alpha \beta }}} \right]\widetilde h_{\alpha \beta }^c\end{array}\]

which, at the linearized level, becomes

    \[\begin{array}{c}{h_{\mu \nu }}\left( p \right) = - 16\pi G{\Delta _4}\left( p \right) \cdot \\\left[ {{T_{\mu \nu }}\left( p \right) - \frac{1}{2}{\eta _{\mu \nu }}{T^\alpha }_\alpha \left( p \right)} \right] \cdot \\ - 16\pi G\left[ {2\prod {_2} } \right.\left( p \right){T_{\mu \nu }}\left( p \right) + \\\prod {_1} \left( p \right){\eta _{\mu \nu }}{T^\alpha }_\alpha \left. {\left( p \right)} \right]\end{array}\]

Now note, after cancelling the infinities with the appropriate counterterms, the finite remainder must necessarily have the form

    \[\prod {_i} \left( p \right) = 32\pi G\left( {{a_i}{\rm{In}}\frac{{{p^2}}}{{{\mu ^2}}} + {b_i}} \right)\]

where {a_i} and {b_i} \left( {i = 1,2,3,4,5} \right), are numerical coefficients and \mu is an arbitrary subtraction constant having the dimensions of mass. To relate to the Newtonian potential, one Fourier-transforms back to coordinate space. For a point source, {T_{00}}\left( x \right) = m{\delta ^3}\left( r \right), we obtain to this order the following relations

    \[\left\{ {\begin{array}{*{20}{c}}{{g_{00}} = - \left( {1 - \frac{{2Gm}}{r} - \frac{{2\alpha {G^2}m}}{{{r^3}}}} \right)}\\{{g_{ij}} = \left( {1 + \frac{{2Gm}}{r} + \frac{{2\beta {G^2}m}}{{{r^3}}}} \right){\delta _{ij}}}\end{array}} \right.\]

and since all spins contribute with the same sign as they must by general positivity arguments on the self-energy in (1) above, we get

    \[\begin{array}{c}\alpha = 2\beta = \frac{1}{{45\pi }}\left( {12{N_1} + 3{N_{1/2}} + {N_0}} \right)\\ = \frac{{2{N^2}}}{{3\pi }}\end{array}\]

also notice that \alpha determines the crucial part of the Weyl anomaly that involves the square of the Weyl tensor

    \[{g_{\mu \nu }}\left\langle {{T^{\mu \nu }}} \right\rangle = b\left( {F + \frac{2}{3}{{\overline {\not \Theta } }_{dA}}R} \right) + b'G\]

where

    \[\begin{array}{c}F = {C_{\mu \nu \rho \sigma }}{C^{\mu \nu \rho \sigma }} = {R_{\mu \nu \rho \sigma }}{R^{\mu \nu \rho \sigma }} - \\2{R_{\mu \nu }}{R^{\mu \nu }} + {R^2}\end{array}\]

and

    \[\begin{array}{c}G = * {R_{\mu \nu \rho \sigma }} * {R^{\mu \nu \rho \sigma }} = {R_{\mu \nu \rho \sigma }}{R^{\mu \nu \rho \sigma }}\\ - 4{R_{\mu \nu }}{R^{\mu \nu }} + {R^2}\end{array}\]

with the constants

    \[b = \frac{1}{{120{{\left( {4\pi } \right)}^2}}}\left[ {12{N_1} + 3{N_{1/2}} + {N_0}} \right]\]

and

    \[b' = - \frac{1}{{720{{\left( {4\pi } \right)}^2}}}\left[ {124{N_1} + 11{N_{1/2}} + 2{N_0}} \right]\]

So for the central charge, one obtains

    \[c = \pi {L^3}/8{G_5}\]

hence, we have

    \[G\alpha = \frac{{G{L^3}}}{{3{G_5}}} = \frac{{2{L^2}}}{3}\]

with the second equality making explicit use of the brane-world relation G = 2{G_5}/L,

making it universal and independent of which particular CFT appears in the AdS/CFT correspondence, which is precisely as desired since the Randall–Sundrum coefficient does not depend on the details of the fields propagating on the brane!

Now, on the brane-world, where the five-dimensional action has the form

    \[\begin{array}{c}S = \int {{d^5}} x\sqrt { - {g_{\left( 5 \right)}}} \left[ {{M^3}{R_{\left( 5 \right)}} - \Lambda } \right]\\ + \int {{d^4}x} \sqrt { - {g_{\left( 4 \right)}}} \widetilde {\not L}_{{\rm{BRANE}}}^{{\rm{Lag}}}\end{array}\]

with M the five-dimensional Planck mass, and {M^3} = 1/\left( {16\pi {G_5}} \right), and \Lambda is the cosmological constant in the bulk. Small fluctuations of the metric on the brane may be represented as

    \[\begin{array}{c}d{s^2} = {e^{ - 2\left| y \right|/L}}\left[ {{\eta _{\mu \nu }} + {h_{\mu \nu }}\left( {x,y} \right)} \right] \cdot \\d{x^\mu }d{x^\nu } + d{y^2}\end{array}\]

with L being the radius of AdS, defined by

    \[R_{MNPQ}^{\left( 5 \right)} = - \frac{1}{{{L^2}}}\left( {g_{MP}^{\left( 5 \right)}g_{NQ}^{\left( 5 \right)} - g_{MQ}^{\left( 5 \right)}g_{NP}^{\left( 5 \right)}} \right)\]

and we have the crucial relation \Lambda = - 12{M^3}/{L^2}, which yields the CFT-bane relation

    \[\begin{array}{l}{h_{\mu \nu }}\left( p \right) = - \frac{2}{{L{M^3}}}{\Delta _3}\left[ {{T_{\mu \nu }}\left( p \right) - \frac{1}{2}{\eta _{\mu \nu }}{T^\alpha }_\alpha \left( p \right)} \right]\\ - \frac{1}{{{M^3}}}{\Delta _{KK}}\left( p \right)\left[ {{T_{\mu \nu }}\left( p \right) - \frac{1}{3}{\eta _{\mu \nu }}{T^\alpha }_\alpha \left( p \right)} \right]\end{array}\]

the above relation has physical meaning: {\Delta _4}\left( p \right), the four-dimensional massless propagator, corresponds exactly to the zero-mode graviton localized on the brane, while

    \[{\Delta _{KK}}\left( p \right) = - \frac{1}{p}\frac{{{K_0}\left( {pL} \right)}}{{{K_1}\left( {pL} \right)}}\]

is the propagator for the continuum Kaluza–Klein graviton modes, hence getting a relation between four-and-five-dimensional Newton’s constants. So, at large distances, corresponding to pL \ll 1, a small-argument expansion for Bessel functions gives us

    \[\begin{array}{c}{\Delta _{KK}}\left( p \right) = \frac{L}{2}\left( {{\rm{In}}\frac{{{p^2}{L^2}}}{4} + 2y} \right) + \\\vartheta {\left( p \right)^2}\end{array}\]

Thus, by evaluating the Fourier transform for r \gg L yields the linearized metric

    \[\left\{ {\begin{array}{*{20}{c}}{{h_{00}} = \frac{{2Gm}}{r}\left( {1 + \frac{{2{L^2}}}{{3{r^2}}} + ...} \right)}\\{{h_{ij}} = \frac{{2Gm}}{r}\left( {1 + \frac{{{L^2}}}{{3{r^2}}} + ...} \right){\delta _{ij}}}\end{array}} \right.\]

giving us a physical meaning to the Newtonian potential: therefore we have shown that the 1/{r^3}corrections to Newton’s law are identical between the Maldacena ‘model’ and Randall–Sundrum ‘model’ which entails a deep classical/quantum duality expressed by

    \[\prod {_2} \left( p \right) + \vartheta \left( {{G^2}} \right) = \frac{L}{4}{\Delta _{KK}}\left( p \right)\]

which in turn highly suggests that the ‘AdS/Super-CFT Randall–Sundrum brane-world duality’ is true and ought therefore to be undergrid by a mathematical proof: for the next post!

But in my opinion, all things in nature occur mathematically ~ René Descartes

1 Response