Sign up with your email address to be the first to know about new products, VIP offers, blog features & more.

The Nieh–Yan Action and Barbero-Immirzi Hamiltonian Analysis

I will derive the following: the Nieh–Yan action, in the context of Barbero-Immirzi Hamiltonian analysis, allows the phase-space of General Relativity to be determined by Ashtekar-Barbero variables, and as to why this is deep and crucial for the viability of LQG is a topic for another post. Recall how I showed that the Barbero–Immirzi field action:

    \[\begin{array}{l}{S^{{\gamma _f}}} = - \frac{1}{2}\int {{d^4}{\,^{(4)}}} e\left[ {e_a^\mu } \right.e_b^\nu {\overline {{R_{\mu \nu }}} ^{ab}}\\ + \frac{{{\gamma _f}}}{2}{{\bar \nabla }_\mu }{S^\mu } + \frac{1}{{24}}{S_\mu }{S^\mu } - \\\frac{2}{3}{T_\mu }{T^\mu } + \frac{{{\gamma _f}}}{3}{T_\mu }{S^\mu } + \frac{1}{2}{q_{\mu \nu \rho }}{q^{\mu \nu \rho }}\\ + \frac{{{\gamma _f}}}{2}{\varepsilon _{\mu \nu e\sigma }}{q_\tau }^{\mu \rho }\left. {{q^{\tau \nu \sigma }}} \right]\end{array}\]

with

    \[{S_\mu } \equiv {\varepsilon _{\nu \rho \sigma \mu }}{T^{\nu \rho \sigma }}\]

and

    \[{\bar \nabla _\mu }\]

the torsion-less metric-compatible covariant derivative, induces contortion spin-connections by solving:

    \[{\gamma _f}\]

and hence:

    \[{S^{{\gamma _f}}}\]

generalizes to:

    \[\begin{array}{l}S_{NY}^{{\gamma _f}} = - \frac{1}{2}\int {{d^4}} x{\,^{(4)}}e\,e_a^\mu e_b^\nu {R_{\mu \nu }}^{ab} - \\\frac{1}{4}\int {{d^4}} x{\,^{(4)}}e{\gamma _f}\left( {{\eta _{ab}}} \right.T_{\mu \nu }^aT_{\rho \sigma }^a - \\e_a^\mu e_b^\nu \varepsilon _{cd}^{ab}\left. {{R_{\mu \nu }}^{cd}} \right)\end{array}\]

Thus, the second integral is the Nieh-Yan topological invariant and connects to the Holst term, yielding:

    \[\begin{array}{l}^\dagger S_{NY}^{{\gamma _f}} = - \frac{1}{2}\int {{d^4}} x{\,^{(4)}}e\left[ {e_a^\mu } \right.e_b^\nu {\overline {{R_{\mu \nu }}} ^{ab}}\\ + \frac{{{\gamma _f}}}{2}{{\bar \nabla }_\mu }{S^\mu } + \frac{1}{{24}}{S_\mu }{S^\mu } - \frac{1}{3}{T_\mu }{T^\mu }\\ + \frac{1}{2}{q_{\mu \nu \rho }}\left. {{q^{_{\mu \nu \rho }}}} \right]\end{array}\]

After varying the action with respect to the irreducible components of:

    \[\left\{ {\begin{array}{*{20}{c}}{{S^\mu }}\\{{T^\nu }}\\{{q^{\rho \sigma \tau }}}\end{array}} \right.\]

we obtain:

    \[\left\{ {\begin{array}{*{20}{c}}{{\partial _\mu }{\gamma _f} - \frac{1}{6} - {S_\mu } = 0}\\{{T_\mu } = 0}\\{{q_{\mu \nu \rho }} = 0}\end{array}} \right.\]

Inserting into:

    \[^\dagger S_{NY}^{{\gamma _f}}\]

one gets the effective action:

    \[\begin{array}{l}S_{eff}^{{\gamma _f}} = - \frac{1}{2}\int {{d^4}} x{\,^{(4)}}ee_a^\mu e_b^\nu {\overline {{R_{\mu \iota }}} ^{ab}} + \\\frac{3}{4}\int {{d^4}} x{\,^{(4)}}e{\partial _\alpha }{\gamma _f}{\partial ^\alpha }{\gamma _f}\end{array}\]

giving us an equivalence with the Hilbert-Palatini torsion-free action and thus solving the gauge-free accessibility problem as well as the 4-D uplifting problem caused by invariance under rescaling symmetry and translational symmetry.

  • Now, since the phase-space has symplectic structure:

    \[\left\{ {K_\alpha ^i\left( {t,x} \right),E_j^\gamma \left( {t,x'} \right)} \right\} = \delta _\alpha ^\gamma \delta _j^i\delta \left( {x,x'} \right)\]

and

    \[\left\{ {{\gamma _f}\left( {t,x} \right),\prod \left( {t,x'} \right)} \right\} = \delta \left( {x,x'} \right)\]

It thus follows that the total BI-field Hamiltonian:

    \[{H_{tot}} = \int {{d^3}} x\left( {{ \wedge ^i}} \right.{\tilde R_i} + {N^\alpha }\widetilde {{H_\alpha }} + \left. {N\widetilde H} \right)\]

with

    \[\left\{ {\begin{array}{*{20}{c}}{{ \wedge ^i}}\\{{N^\alpha }}\\N\end{array}} \right.\]

the Lagrange multipliers, obeys:

    \[{\partial _{{o_t}}}{\gamma _f}^\phi \left\{ {{H_{tot}},{\gamma _f}^\phi } \right\}\]

where

    \[\left\{ {\;,\;} \right\}\]

is the Poisson bracket satisfying:

    \[\begin{array}{l}\left\{ {E_i^a\left( x \right),A_b^i\left( x \right)} \right\} = \delta _b^a\delta _j^i\left( {x,y} \right) = \\\left\{ {\pi _i^\alpha \left( x \right),\omega _b^{(3)i}\left( y \right)} \right\}\end{array}\]

with

    \[{\partial _{{0_t}}}{\gamma _f}^\phi \]

being the time-evolution of the BI-field and

    \[\phi \]

an arbitrary field.

Now, the Einstein field equations with the Immirzi parameter and a cosmological constant are given by the BF-type action (EIBF):

    \[\begin{array}{l}S\left[ {B,\omega ,\phi ,\mu } \right] = \int_M {\left[ {\left( {{B^{IJ}} + \frac{1}{\gamma } * {B^{IJ}}} \right)} \right.} \\ \wedge {F_{IJ}}[\omega ] - {\phi _{IJKL}}{B^{IJ}} \wedge {B^{KL}} - \mu {\phi _{IJKL}}{\varepsilon ^{IJKL}}\\ + \mu \lambda + {l_1}{B_{IJ}} \wedge \left. {{B^{IJ}} + {l_2}{B_{IJ}} \wedge * {B^{IJ}}} \right]\end{array}\]

where 

    \[{B^{IJ}}\]

is a set of 6 2-forms

    \[\left( {{B^{IJ}} = - {B^{IJ}}} \right)\]

and {F_{IJ}} being the curvature for the connection {\omega _{IJ}} with components:

    \[{F_{\mu \nu IJ}} = 2\left( {{\partial _{\left[ {_\mu {\omega _\nu }} \right]IJ}} + {\omega _{\left[ {\mu {{\left| I \right.}^K}{\omega _\nu }} \right]KJ}}} \right)\]

with cosmological constant terms:

    \[\left\{ {\begin{array}{*{20}{c}}\lambda \\{{l_1}}\\{{l_2}}\end{array}} \right.\]

and {\phi _{IJKL}} the internal tensor constraining the B-field with symmetries:

    \[{\phi _{IJKL}} = {\phi _{KLIJ}} = - {\phi _{JIKL}} = - {\phi _{IJLK}}\]

\mu a 4-form and \gamma is the Immirzi parameter. As is standard, * is the internal Hodge dual:

    \[\begin{array}{l} * {U_{IJ}} = (1/2){\varepsilon _{IJKL}}{U^{KL}}\\{\rm{with:}}\quad \quad {{\rm{U}}_{IJ}} = - {U_{IJ}}\end{array}\]

with:

    \[{\varepsilon _{0123}} = 1\]

Now, since one can integrate the Immirzi parameter into the theory, the following identity can be derived:

    \[^{\left( \gamma \right)}{U_{IJ}} \equiv {U_{IJ}} + \frac{1}{\gamma } * {U_{IJ}}\]

with inverse transformation:

    \[{U_{IJ}} = \frac{{{\gamma ^2}}}{{{\gamma ^2} - \sigma }}\left( {^{\left( \gamma \right)}{U_{IJ}} - \frac{1}{\gamma }{ * ^{\left( \gamma \right)}}{U_{IJ}}} \right)\]

Combining with the EIBF-action:

    \[\begin{array}{l}S\left[ {B,\omega ,\phi ,\mu } \right] = \int_M {\left[ {\left( {{B^{IJ}} + \frac{1}{\gamma } * {B^{IJ}}} \right)} \right.} \\ \wedge {F_{IJ}}[\omega ] - {\phi _{IJKL}}{B^{IJ}} \wedge {B^{KL}} - \mu {\phi _{IJKL}}{\varepsilon ^{IJKL}}\\ + \mu \lambda + {l_1}{B_{IJ}} \wedge \left. {{B^{IJ}} + {l_2}{B_{IJ}} \wedge * {B^{IJ}}} \right]\end{array}\]

one can derive the following identities:

    \[^{\left( \gamma \right)}{U_{IJ}}{V^{IJ}} = {U_{IJ}}^{\left( \gamma \right)}{V^{IJ}}\]

    \[\left( {{U_{\left[ {\left. I \right|} \right.}}^K{V_{K\left| {\left. J \right]} \right.}}} \right){ = ^{\left( \gamma \right)}}{U_{\left[ {\left. I \right|} \right.}}{V_{K\left| {\left. J \right]} \right.}} = {U_{\left[ {\left. I \right|} \right.}}{K^K}{V_{K\left| {\left. J \right]} \right.}}\]

    \[\begin{array}{l} * \left( {{U_{\left[ {\left. I \right|} \right.}}^K{V_{K\left| {\left. J \right]} \right.}}} \right) = * {U_{\left[ {\left. I \right|} \right.}}^K{V_{K\left| {\left. J \right]} \right.}}\\ = {U_{\left[ {\left. I \right|} \right.}}^K * {V_{K\left| {\left. J \right]} \right.}}\end{array}\]

  The first step in the Hamiltonian analysis of the EIBF-action is that, given that the total BI-field Hamiltonian:

    \[{H_{tot}} = \int {{d^3}} x\left( {{ \wedge ^i}} \right.{\tilde R_i} + {N^\alpha }\widetilde {{H_\alpha }} + \left. {N\widetilde H} \right)\]

obeys:

    \[{\partial _{{o_t}}}{\gamma _f}^\phi \left\{ {{H_{tot}},{\gamma _f}^\phi } \right\}\]

where

    \[\left\{ {\;,\;} \right\}\]

is the Poisson bracket, the Hamiltonian takes the following form:

    \[\begin{array}{l}S\left[ {{\omega _a}{,^{\left( \gamma \right)}}{\Pi ^a},\tilde N,{N^a},\xi ,{\varphi _{ab}},{\psi _{ab}}} \right]\\ = \int_\mathbb{R} {dt} \int_\Omega {{d^3}} x\left( {^{\left( \gamma \right)}{\Pi ^{aIJ}}} \right.{{\dot \omega }_{aIJ}} + \tilde N\tilde H\\ + {N^a}{{\tilde H}_a} + {\xi _{IJ}}{\wp ^{IJ}} + {\varphi _{ab}}{\Phi ^{ab}} + \left. {{\psi _{ab}}{\Psi ^{ab}}} \right)\end{array}\]

with:

    \[^{\left( \gamma \right)}{\Pi ^{aIJ}}\]

the canonically conjugate momenta with respect to the connection:

    \[{\omega _{abIJ}}\]

and the following holds:

    \[{\Pi ^{aIJ}}{ = _{def}}\frac{1}{2}{\tilde \eta ^{abc}}{B_{bc}}^{IJ}\]

and

    \[{\tilde \eta ^{abc}}\]

is an antisymmetric tensor density of weight +1. Now, the Lagrange multipliers:

    \[\left\{ {\begin{array}{*{20}{c}}{{ \wedge ^i}}\\{{N^\alpha }}\\N\end{array}} \right.\]

allow us to deduce the following crucial EIBF constraints:

    \[{\wp ^{IJ}}: = {D_a}^{\left( \gamma \right)}{\Pi ^{aIJ}} \approx 0\]

    \[{\tilde H_a}: = \frac{1}{2}{\Pi ^{bIJ}}{\,^{\left( \gamma \right)}}{F_{baIJ}} \approx 0\]

    \[\begin{array}{c}\tilde H: = \frac{1}{4}{{\tilde \eta }^{abc}}{h_{ad}} * {\Pi ^{dIJ}}{\,^{\left( \gamma \right)}}{F_{bcIJ}}\\ + 2\Lambda h \approx 0\end{array}\]

    \[{\Phi ^{ab}}: = - \sigma * {\Pi ^{aIJ}}{\Pi ^b}_{IJ} \approx 0\]

and

    \[{\Psi ^{ab}}: = 2{h_{cf}}{\tilde \eta ^{\left( {a\left| {cd} \right.} \right.}}{\Pi ^f}_{IJ}{D_d}{\Pi ^{\left| {\left. b \right)IJ} \right.}} \approx 0\]

and

    \[\Lambda = 3{l_2} - \sigma \lambda /4\]

the cosmological constant, and {D_a} is the SO(1,3) covariant derivative:

    \[\left( {{D_a}{\Pi ^{bIJ}} = {\partial _a}{\Pi ^{bIJ}} + \omega _a^I{\,_K}{\Pi ^{bIJ}} - \omega _a^I{\,_K}{\Pi ^{bKI}}} \right)\]

and h is the determinant of the spatial metric {h_{ab}} whose inverse {h^{ab}} satisfies:

    \[h{h^{ab}} = \frac{\sigma }{2}{\Pi ^{aIJ}}{\Pi ^b}_{IJ}\]

Now, one can use the Dirac-method to eliminate some canonical variables from the theory thus reducing the solution to the equations:

    \[{\Phi ^{ab}}: = - \sigma * {\Pi ^{aIJ}}{\Pi ^b}_{IJ} \approx 0\]

    \[{\Psi ^{ab}}: = 2{h_{cf}}{\tilde \eta ^{\left( {a\left| {cd} \right.} \right.}}{\Pi ^f}_{IJ}{D_d}{\Pi ^{\left| {\left. b \right)IJ} \right.}} \approx 0\]

to the original Holstsian phase-space. Noting that the following:

    \[{\Pi ^{a0i}} = {E^{ai}}\]

is a solution, it follows that {E^{ai}} is invertible with inverse {E_{ai}}, and the following relation:

    \[h{h^{ab}} = \frac{\sigma }{2}{\Pi ^{aIJ}}{\Pi ^b}_{IJ}\]

reduces to:

    \[h{h^{ab}} = {\eta _{ij}}{E^{ai}}{E^{bj}}\]

with:

    \[{\eta _{ij}}: = \left( {1 + \sigma {\chi _k}{\chi ^k}} \right){\delta _{ij}} - \sigma {\chi _i}{\chi _i}\]

Similarly, one can use

    \[{\Phi ^{ab}}: = - \sigma * {\Pi ^{aIJ}}{\Pi ^b}_{IJ} \approx 0\]

    \[{\Psi ^{ab}}: = 2{h_{cf}}{\tilde \eta ^{\left( {a\left| {cd} \right.} \right.}}{\Pi ^f}_{IJ}{D_d}{\Pi ^{\left| {\left. b \right)IJ} \right.}} \approx 0\]

in order to collapse the symplectic structure to:

    \[\begin{array}{l}\int_\Omega {{d^3}} x\left( {^{\left( \gamma \right)}{\Pi ^{aIJ}}{{\dot \omega }_{aIJ}}} \right) = \\\int_\Omega {{d^3}} x\left( {{\Pi ^{aIJ}}{{\frac{\partial }{{\partial t}}}^{\left( \gamma \right)}}{\omega _{aIJ}}} \right) = \\2\int_\Omega {{d^3}} x\left( {{E^{ai}}{{\dot A}_{ai}} + {\zeta _i}{{\dot \chi }^i}} \right)\end{array}\]

such that the following hold:

    \[{A_{ai}}:{ = ^{\,\left( \gamma \right)}}{\omega _{a0i}}{ + ^{\,\left( \gamma \right)}}{\omega _{aIJ}}{\chi ^j}\]

    \[{\zeta _i}:{ = ^{\left( \gamma \right)}}{\omega _{aij}}{E^{aj}}\]

hence, the phase space variables:

    \[\left\{ {\begin{array}{*{20}{c}}{\left( {{A_{ai}},{E^{ai}}} \right)}\\{\left( {{\chi ^i},{\zeta _i}} \right)}\end{array}} \right.\]

obey the Poisson brackets:

    \[\left\{ {{A_{ai}}(x),{E^{bj}}(y)} \right\} = \frac{1}{2}\delta _a^b\delta _i^j{\delta ^3}\left( {x,y} \right)\]

    \[\left\{ {{\chi ^j}(x),{\zeta _j}(y)} \right\} = \frac{1}{2}\delta _j^i{\delta ^3}\left( {x,y} \right)\]

Now, since:

    \[{\zeta _i}:{ = ^{\left( \gamma \right)}}{\omega _{aij}}{E^{aj}}\]

is an inhomogeneous linear system of equations for the unknowns ^{\left( \gamma \right)}{\omega _{aij}}, with general solution:

    \[^{\left( \gamma \right)}{\omega _{aij}} = \frac{1}{2}{\varepsilon _{ijk}}{E_{al}}{M^{kl}} - {E_{a\left[ {_i{\zeta _j}} \right]}}\]

From:

    \[{A_{ai}}:{ = ^{\,\left( \gamma \right)}}{\omega _{a0i}}{ + ^{\,\left( \gamma \right)}}{\omega _{aIJ}}{\chi ^j}\]

we can derive:

    \[^{\left( \gamma \right)}{\omega _{a0i}} = {A_{ai}}{ - ^{\left( \gamma \right)}}{\omega _{aij}}{\chi ^j}\]

thus, we have a linear map:

    \[\left( {{A_{ai}},{\zeta _i},{M^{ij}}} \right) \to \left( {^{\left( \gamma \right)}{\omega _{a0i}}{,^{\left( \gamma \right)}}{\omega _{aij}}} \right)\]

whose inverse map is:

    \[\left( {^{\left( \gamma \right)}{\omega _{a0i}}{,^{\left( \gamma \right)}}{\omega _{aij}}} \right) \to \left( {{A_{ai}},{\zeta _i},{M^{ij}}} \right)\]

together with:

    \[{M^{ij}} = {E^{a{{\left( {^i{\varepsilon ^j}} \right)}^{kl}}}}^{\left( \gamma \right)}{\omega _{akl}}\]

Consistency conditions with the Holst action impose on us:

    \[\begin{array}{l}{M^{ij}} = \frac{1}{{1 + \sigma {\chi _m}{\chi ^m}}}\left[ {\left( {{f^k}_k + \sigma {f_{kl}}{\chi ^k}{\chi ^l}} \right)} \right.{\delta ^{ij}}\\ + \left( {\sigma {f^k}_k - \sigma {f_{kl}}{\chi ^k}{\chi ^l}} \right){\chi ^i}{\chi ^j} - \\{f^{ij}} - {f^{ji}} - \sigma \left( {{f^{ik}}{\chi ^j} + {f^{jk}}{\chi ^i} + {f^{kj}}{\chi ^i}} \right)\left. {{\chi _k}} \right]\end{array}\]

by substituting, we can derive:

    \[{\Psi ^{ab}} = {T^{abij}}{f_{ij}} + {G^{ab}} \approx 0\]

with:

    \[\begin{array}{l}{f_{ij}} = - {\varepsilon _{ikl}}{E^{ak}}\left[ {\left( {1 - \sigma {\gamma ^{ - 2}}} \right)} \right.{E_{bj}}{\partial _a}{E^{bl}}\\\left. { + \sigma {\chi ^l}{A_{aj}}} \right] + \frac{\sigma }{\gamma }\left( {{E^{ak}}{A_{ak}}{\delta _{ij}} - {A_{ai}}{E^a}_j + {\zeta _i}{\chi _j}} \right)\end{array}\]

Now, we are in a position to rewrite the remaining constraints in:

    \[\begin{array}{l}S\left[ {{\omega _a}{,^{\left( \gamma \right)}}{\Pi ^a},\tilde N,{N^a},\xi ,{\varphi _{ab}},{\psi _{ab}}} \right]\\ = \int_\mathbb{R} {dt} \int_\Omega {{d^3}} x\left( {^{\left( \gamma \right)}{\Pi ^{aIJ}}} \right.{{\dot \omega }_{aIJ}} + \tilde N\tilde H\\ + {N^a}{{\tilde H}_a} + {\xi _{IJ}}{\wp ^{IJ}} + {\varphi _{ab}}{\Phi ^{ab}} + \left. {{\psi _{ab}}{\Psi ^{ab}}} \right)\end{array}\]

as phase-space variables, thus the Gauss constraint splits into boost and rotational parts as follows:

    \[\begin{array}{l}\wp _{boost}^i: = {\wp ^{0i}} = {\partial _a}\left( {{E^{ai}} + \frac{\sigma }{\gamma }{\varepsilon ^i}_{jk}{E^{ai}}{\chi ^k}} \right)\\ + \,2\sigma {A_{aj}}{E^{a\left[ {^j{\chi ^i}} \right]}} + \sigma {\zeta _j}{\chi ^j}{\chi ^i} + {\zeta ^i}\end{array}\]

and

    \[\begin{array}{l}\wp _{rot}^i: = \frac{1}{2}{\varepsilon ^i}_{jk}{\wp ^{jk}} = {\partial _a}\left( {{\varepsilon ^i}_{jk}{E^{aj}}{\chi ^k} + \frac{1}{\gamma }{E^{aj}}} \right)\\ - {\varepsilon ^i}_{jk}\left( {A_a^j{E^{ak}} - {\zeta ^j}{\chi ^k}} \right)\end{array}\]

yielding the vector and scalar constraints:

    \[\begin{array}{l}{{\tilde H}_a} = 2{E^{bi}}{\partial _{\left[ {_b{A_a}} \right]i}} - {\zeta _i}{\partial _a}{\chi ^i} + \\\frac{{{\gamma ^2}}}{{{\gamma ^2} - \sigma }}\left[ {2\sigma } \right.{E^{b\left[ {^i{\chi ^j}} \right]}}{A_{ai}}{A_{bj}} - \\ - {A_{ai}}\left( {{\zeta ^i} + \sigma {\zeta _j}{\chi ^j}{\chi ^i}} \right) + \\\frac{\sigma }{\gamma }{\varepsilon _{ijk}}\left( {{E^{bi}}A_b^j + {\zeta ^i}{\chi ^j}} \right)\left. {A_a^k} \right]\end{array}\]

and

    \[\begin{array}{l}\tilde H = - \sigma {E^{ai}}{\chi _i}{{\tilde H}_a} + \left( {1 + \sigma {\chi _k}{\chi ^k}} \right)\\ \cdot \left( {{E^{ai}}{\partial _a}{\zeta _i} + \frac{1}{2}{\zeta _i}{E^{ai}}{E^{bj}}{\partial _a}{E_{bj}}} \right)\\ - \frac{{\sigma {\gamma ^2}}}{{{\gamma ^2} - \sigma }}\left\{ {\left( {1 + \sigma {\chi _l}{\chi ^l}} \right)} \right.\left[ {{E^{ai}}} \right.{E^{bj}}{A_{a\left[ {\left. i \right)} \right.}}{A_{b\left[ {\left. j \right)} \right.}}\\ + {\zeta _i}{\chi ^i}{A_{aj}}{E^{aj}} + \frac{3}{4}{\left( {{\zeta _i}{\chi ^i}} \right)^2} + \frac{3}{4}\sigma {\zeta _i}{\zeta ^i}\\ - \frac{1}{\gamma }{\varepsilon _{ijk}}{E^{ai}}A_a^j\left. {{\zeta ^k}} \right] - \frac{\sigma }{4}{\left( {f_i^i} \right)^2} + \\\frac{\sigma }{2}{f^{ij}}{f_{\left( {ij} \right)}} - \frac{1}{2}{f_{ij}}{\chi ^i}{\chi ^j}\left( {f_k^k - \frac{\sigma }{2}{f_{kl}}{\chi ^k}{\chi ^l}} \right)\\ + \frac{1}{4}\left( {{f_{ij}} + {f_{ji}}} \right)\left( {{f^{ik}} + {f^{ki}}} \right)\left. {{\chi ^j}\chi k} \right\}\\ + 2\Lambda \left( {1 + \sigma {\chi _k}{\chi ^k}} \right)E\end{array}\]

where:

    \[E: = \det \left( {{E^{ai}}} \right)\]

relates to h via:

    \[{h^2} = {\left( {1 + \sigma {\chi _k}{\chi ^k}} \right)^2}{E^2}\]

Hence, our phase space is now determined by 12, down from 24, canonical pairs:

    \[\left\{ {\left( {{A_{ai}},{E^{ai}}} \right),\left( {{\chi ^i},{\zeta _i}} \right)} \right\}\]

and to construct the Barbero’s formulation one must demand that the variables {E^{ai}} constitute a densitized triad for the spatial metric {h_{ab}}, that is:

    \[{\chi ^i} = 0\]

Up until now, our formalism and theory is fully diffeomorphism and Lorentz invariant, however, one must break the Lorentz group SO\left( {1,3} \right) down to its compact subgroup SO\left( 3 \right) in order to derive the Ashtekar-Barbero variables, and this is accomplished by choosing the time-gauge:

    \[{\chi ^i} = 0\]

The solution of the second-class constraints is thus given by:

    \[\left\{ {\begin{array}{*{20}{c}}{{\Pi ^{a0i}} = {E^{ai}}}\\{{\Pi ^{aij}} = 0}\end{array}} \right.\]

and:

    \[^{\left( \gamma \right)}{\omega _{a0i}} = {A_{ai}}\]

    \[^{\left( \gamma \right)}{\omega _{aij}} = {\varepsilon _{ijk}}\left[ {\left( {1 - \sigma {\gamma ^2}} \right)\Gamma _a^k + \sigma {\gamma ^{ - 1}}A_a^k} \right]\]

where {\Gamma _{ai}} is the rotational part of {\omega _{aIJ}}, that is:

    \[{\Gamma _{ai}}: = \frac{1}{2}{\varepsilon _{ijk}}{\omega _a}^{jk}\]

which allow us to derive:

    \[\wp _{boost}^i = {\partial _a}{E^{ai}} + {\varepsilon ^{ijk}}\left[ {\left( {1 - \sigma {\gamma ^{ - 2}}} \right){\Gamma _{ak}} + \sigma {\gamma ^{ - 1}}{A_{ak}}} \right]{E^a}_j\]

    \[\wp _{rot}^i = {\gamma ^{ - 1}}{\partial _a}{E^{ai}} - {\varepsilon ^{ijk}}{A_{aj}}{E^a}_k\]

    \[{\Psi ^{ab}} = - 4\sigma {\varepsilon _{ijk}}{E^{ci}}{E^{\left( {\left. a \right|k} \right.}}\left( \begin{array}{l}{\partial _c}{E^{\left| {\left. b \right)j} \right.}}\\ - {\varepsilon ^{ilm}}{\Gamma _{cl}}{E^{\left| {\left. b \right)} \right.}}_m\end{array} \right)\]

Combining them, one gets:

    \[\begin{array}{l}\frac{{{\gamma ^2}}}{{{\gamma ^2} - \sigma }}\left( {\wp _{boost}^i - \frac{\sigma }{\gamma }\wp _{rot}^i} \right) = \\{\partial _a}{E^{ai}} + {\varepsilon ^{ijk}}{\Gamma _{ak}}{E^a}_j = 0\end{array}\]

and together with:

    \[\wp _{rot}^i = {\gamma ^{ - 1}}{\partial _a}{E^{ai}} - {\varepsilon ^{ijk}}{A_{aj}}{E^a}_k\]

we get the following solution:

    \[{\Gamma _{ai}} = {\varepsilon _{ijk}}\left( {{\partial _{\left[ {_b{E_a}} \right]}}^j + {E_a}^{\left[ {\left. l \right|} \right.}{E^{c\left[ {\left. j \right|} \right.}}{\partial _b}{E_{cl}}} \right){E^{bk}}\]

And here’s the crucial point: this is the spin-connection of the densitized triad {E^{ai}}

and satisfies the following 3 relations:

    \[{\wp ^i} = {\gamma ^{ - 1}}{\ddot \not D_a}{E^{ai}}\]

    \[{\tilde H_a} = {E^{bi}}{F_{bai}} + \left( {1 - \sigma {\gamma ^{ - 2}}} \right)\left( \begin{array}{l}\gamma {A_{ai}}\\ - {\Gamma _{ai}}\end{array} \right){\wp ^i}\]

    \[\begin{array}{l}\tilde H = \frac{\sigma }{{2\gamma }}{\varepsilon _{ijk}}{E^{aj}}{E^{bk}}\left[ {{F_{ab}}^i} \right. + \left( {\sigma \gamma - } \right.\\\left. {{\gamma ^{ - 1}}} \right)\left. {{R_{ab}}^i} \right] + 2\Lambda E\end{array}\]

with:

    \[\ddot \not D{E^{ai}}: = {\partial _a}{E^{ai}} - \gamma {\varepsilon ^{ijk}}{A_{aj}}{E^a}_k\]

and:

    \[\left\{ {\begin{array}{*{20}{c}}{{F_{abi}}}\\{{R_{abi}}}\end{array}} \right.\]

are the curvatures of the connections:

    \[\left\{ {\begin{array}{*{20}{c}}{{A_{ai}}}\\{{\Gamma _{ai}}}\end{array}} \right.\]

obeying the following equations:

    \[{F_{abi}} = 2{\partial _{\left[ {_a{A_b}} \right]\,i}} - \gamma {\varepsilon _{ijk}}{A_a}^j{A_b}^k\]

    \[{R_{abi}} = 2{\partial _{\left[ {_a{\Gamma _b}} \right]\,i}} - {\varepsilon _{ijk}}{\Gamma _a}^j{\Gamma _b}^k\]

    \[\left\{ {\begin{array}{*{20}{c}}{\sigma = - 1}\\{\gamma = \pm i}\end{array}} \right.\]

Hence, the reformulation of the phase space of General Relativity in terms of our canonical variables recovers the Ashtekar formulation given

our Hamiltonian:

    \[{H_{tot}} = \int {{d^3}} x\left( {{ \wedge ^i}} \right.{\tilde R_i} + {N^\alpha }\widetilde {{H_\alpha }} + \left. {N\widetilde H} \right)\]

and given the Nieh–Yan action: we can describe the phase space of general relativity in terms of the Ashtekar-Barbero variables