Sign up with your email address to be the first to know about new products, VIP offers, blog features & more.

The Orbifold Riemann–Roch Theorem and Todd-Chern Classes

All the measurements in the world do not balance one theorem by which the science of eternal truths is actually advanced ~ Carl Friedrich Gauss

In this post, I will derive the Orbifold Riemann–Roch Theorem, which I will eventually show is crucial to the meta-stability and categoricity of M-theory. In my last post I showed that the cohomology pairing and the Galois action on \widehat S\left( \chi \right) are uniquely determined by the cohomology framing

    \[\begin{array}{c}\left( {{{\widehat Z}_{COH}}\left( \alpha \right),{{\widehat Z}_{COH}}\left( \beta \right)} \right) = \\{\left( {{e^{\pi \widehat i\rho }}\alpha ,{e^{\pi \widehat i\mu }}\beta } \right)_{orb}}\end{array}\]

    \[\begin{array}{c}{G^{\widehat S}}\left( \xi \right)\left( {{{\widehat Z}_{COH}}\left( \alpha \right)} \right) = \\{\widehat Z_{COH}}\left( {\left( {\underbrace \oplus _{v \in T}{e^{ - 2\pi \widehat i{\xi _0}}}{e^{2\pi \widehat i{f_v}\left( \xi \right)}}} \right)\alpha } \right)\end{array}\]

and hence the Galois actions on \widehat S\left( \chi \right) can be viewed as the monodromy transformations of the flat bundle F/{H^2}\left( {\chi ,\mathbb{Z}} \right) \to \left( {U/{H^2}\left( {\chi ,\mathbb{Z}} \right)} \right) \times {C^ * } in the \tau-direction. The monodromy with respect to z is hence given by

    \[\begin{array}{c}{\left[ {{{\widehat Z}_{COH}}\left( \alpha \right)} \right]_{{ \bullet _\iota }{ \to ^{\dagger {e^{2\pi \widehat i}}z}}}} = {\widehat Z_{COH}} \cdot \\\left( {{e^{ - 2\pi \left| \mu \right.}}{e^{2\pi \widehat i\rho }}\alpha } \right)\end{array}\]

which coincides with the Galois action

    \[{\left( { - 1} \right)^n}{G^{\widehat S}}\left( {\left[ {{K_\chi }} \right]} \right)\]

with

    \[{ \bullet _\iota }\]

the quantum product I introduced here,

as well as the Serre functor of the Lefschetz category D\chi with \left[ {{K_\chi }} \right] the class of the canonical line bundle and \chi is Calabi–Yau, with with G\left( \xi \right) defined by

    \[\begin{array}{c}G\left( \xi \right)\left( {{\tau _0} \oplus \underbrace {\widehat \otimes }_{\nu \in T'}{\tau _0}} \right) = \\\left( {{\tau _0} - 2\pi \widehat i{\xi _0}} \right) \oplus \underbrace {\widehat \otimes }_{\nu \in T'}{e^{2\pi \widehat i{f_\nu }\left( \xi \right)}}{\tau _0}\end{array}\]

    \[\begin{array}{c}dG\left( \xi \right)\left( {{\tau _0} \oplus \underbrace {\widehat \otimes }_{\nu \in T'}{\tau _0}} \right) = \\{\tau _0} \oplus \underbrace {\widehat \otimes }_{\nu \in T'}{e^{2\pi \widehat i{f_\nu }\left( \xi \right)}}{\tau _0}\end{array}\]

where {\tau _\nu } \in {H^ * }\left( {{\chi _\nu }} \right) and {\xi _0} is the image of \xi in the \chiquantum D-module: and this is the Galois action of {H^2}\left( {\chi ,\mathbb{Z}} \right) on \chiquantum D-module. Let me proceed. 

By an integral structure in quantum cohomology I mean a \mathbb{Z}-local system {F_\mathbb{Z}} \to U \times {\mathbb{C}^ * } underlying the flat bundle {\left( {F,\nabla } \right)_{U \times {\mathbb{C}^ * }}} induced by an integral lattice \widehat S{\left( \chi \right)_\mathbb{Z}} in the space \widehat S\left( \chi \right) of multi-valued flat sections of QDM-\left( \chi \right), where QDM stands for quantum D-module. Let me work with the most interesting integral lattices in \widehat S\left( \chi \right) and the \widetilde \Gamma-integral structure which have deep and essential properties. Now let K\left( \chi \right) denote the Grothendieck group of topological orbifold vector bundles on \chi: for an orbifold vector bundle \widetilde V on the inertia stack {I_\chi }, we have an eigenbundle decomposition of

    \[\widetilde V\left| {_{{\chi _v}}} \right.\]

    \[\widetilde V\left| {_{{\chi _v}}} \right.\underbrace \oplus _{0\, \le f < 1}{\widetilde V_{v,f}}\]

with respect to the action of the stabilizer of {\chi _v}  acting on {\widetilde V_{v,f}} via

    \[\exp \left( {2\pi \hat if} \right) \in \mathbb{C}\]

Now, let pr:{I_\chi } \to \chi be the Picard-projection. Note, the Chern character \widetilde {ch}:K\left( \chi \right) \to {H^ * }\left( {{I_\chi }} \right) is defined for an orbifold vector bundle V on \chi by

    \[\widetilde {ch}: = \underbrace \oplus _{v \in T}\sum\limits_{0\, < f < 1} {{e^{2\pi \widehat if}}} \widetilde {ch}\left( {{{\left( {p{r^ * }V} \right)}_{v,f}}} \right)\]

with ch being the ordinary Chern character. For an orbifold vector bundle V on \chi, let {\delta _{v,f,i}}i = 1,...,{I_{v,f}}, be the Chern roots of {\left( {p{r^ * }V} \right)_{v,f}}. The Todd class

    \[\widetilde {Td}:K\left( \chi \right) \to {H^ * }\left( {{I_\chi }} \right)\]

is defined by

    \[\begin{array}{c}\widetilde {Td}\left( V \right) = \underbrace \oplus _{v \in T}\prod\limits_{0 < f,1\, \le i \le {I_{v,f}}} {\frac{1}{{1 - {e^{ - 2\pi \widehat if}}{e^{ - {\delta _{v,f,i}}}}}}} \\ \cdot \prod\limits_{f = 0,1 \le i \le {I_{v,f}}} {\frac{{{\delta _{v,o,i}}}}{{1 - {e^{ - {\delta _{v,0,i}}}}}}} \end{array}\]

Now the Chern and Todd characteristic classes appear in the Orbifold Riemann–Roch theorem:

For a holomorphic orbifold vector bundle V on \chi, the Euler characteristic \chi \left( V \right) is given by

    \[\begin{array}{c}\chi \left( V \right): = \sum\limits_{i = 0}^{\dim \chi } {{{\left( { - 1} \right)}^i}} \dim {H^i}\left( {\chi ,V} \right)\\ = \int\limits_{{I_\chi }} {\widetilde {ch}\left( V \right)} \cup \widetilde {Td}\left( {T\chi } \right)\end{array}\]

Now define a multiplicative characteristic class \widetilde \Gamma :K\left( \chi \right) \to {H^ * }\left( {{I_\chi }} \right) by

    \[\widetilde \Gamma \left( V \right): = \underbrace \oplus _{v \in T}\prod\limits_{0\, \le f < 1} {\prod\limits_{i = 1}^{{I_v},f} \Gamma } \left( {1 - f + {\delta _{v,f,i}}} \right) \in {H^ * }\left( {{I_\chi }} \right)\]

with {\delta _{v,f,i}} is as above and the Gamma function on the right-hand side must be expanded in series at 1 - f > 0.

Note that the map \widetilde {ch}:K\left( \chi \right) \to {H^ * }\left( {{I_\chi }} \right) transforms into an isomorphism after being tensored with \mathbb{C}. Define the K-group framing {{\rm{Z}}_K}:K\left( \chi \right) \to \widetilde S\left( \chi \right) of the space \widetilde S\left( \chi \right) of multivalued flat sections of the quantum D-module by the formula

    \[\begin{array}{c}{{\rm Z}_K}\left( K \right): = {{\rm Z}_{COH}}\left( {\Psi \left( V \right)} \right) = \\L\left( {\tau ,z} \right){z^{ - \mu }}{z^\rho }\Psi \left( V \right)\end{array}\]

with

    \[\begin{array}{c}\Psi \left( V \right): = {\left( {2\pi } \right)^{ - n/2}}\widetilde \Gamma \left( {T\chi } \right) \cup \\{\left( {2\pi \widehat i} \right)^{\deg /2}}in{v^ * }\left( {\widetilde {ch}\left( V \right)} \right)\end{array}\]

and \deg :{H^ * }\left( {{I_\chi }} \right) \to {H^ * }\left( {{I_\chi }} \right) is a Lefschetz-grading operator on {H^ * }\left( {{I_\chi }} \right) defined by \deg = 2k on {H^{2k}}\left( {{I_\chi }} \right) and \cup is the cup product in {H^ * }\left( {{I_\chi }} \right), which is the image \widetilde S{\left( \chi \right)_\mathbb{Z}}: = {\rm Z}\left( {K\left( \chi \right)} \right)of the K-group framing the \Gamma-integral structure.

Proof of Orbifold Riemann–Roch theorem: The Γ -integral structure \widetilde S{\left( \chi \right)_\mathbb{Z}} satisfies the following three properties

1)  \widetilde S{\left( \chi \right)_\mathbb{Z}} is a \mathbb{Z}-lattice in \widetilde S\left( \chi \right)

    \[\widetilde S\left( \chi \right) = \widetilde S{\left( \chi \right)_\mathbb{Z}}{ \otimes _\mathbb{Z}}\mathbb{C}\]

2) The Galois action {G^{\widetilde S}}\left( \xi \right) on \widetilde S\left( \chi \right) preserves the lattice \widetilde S{\left( \chi \right)_\mathbb{Z}} and corresponds to the tensor by the line bundle L_\xi ^ \vee in K{\left( \chi \right)_Z}

    \[{{\rm Z}_K}\left( {L_\xi ^ \vee \otimes V} \right) = {G^{\widetilde S}}\left( \xi \right)\left( {{{\rm Z}_K}\left( V \right)} \right)\]

where {L_\xi } is the line bundle corresponding to \xi \in {H^2}\left( {\chi ,\mathbb{Z}} \right)

3) The pairing {\left( {.,.} \right)_{\widetilde S}} on \widetilde S\left( \chi \right) corresponds to the Mukai pairing on K\left( \chi \right) defined by

    \[{\left( {{V_1},{V_2}} \right)_{K\left( \chi \right)}}: = \chi \left( {V_2^ \vee \otimes {V_1}} \right)\]

    \[{\left( {{{\rm Z}_K}\left( {{V_1}} \right),{{\rm Z}_K}\left( {{V_2}} \right)} \right)_{\widetilde S}} = {\left( {{V_1},{V_2}} \right)_{K\left( \chi \right)}}\]

Now because {\widetilde \Gamma _\chi } \cup and {\left( {2\pi \widehat i} \right)^{\deg /2}} are invertible operators over \mathbb{C}, by the following two relations

    \[\begin{array}{c}\left( {{{\widehat Z}_{COH}}\left( \alpha \right),{{\widehat Z}_{COH}}\left( \beta \right)} \right) = \\{\left( {{e^{\pi \widehat i\rho }}\alpha ,{e^{\pi \widehat i\mu }}\beta } \right)_{orb}}\end{array}\]

    \[\begin{array}{c}{G^{\widehat S}}\left( \xi \right)\left( {{{\widehat Z}_{COH}}\left( \alpha \right)} \right) = \\{\widehat Z_{COH}}\left( {\left( {\underbrace \oplus _{v \in T}{e^{ - 2\pi \widehat i{\xi _0}}}{e^{2\pi \widehat i{f_v}\left( \xi \right)}}} \right)\alpha } \right)\end{array}\]

we can deduce

    \[\begin{array}{c} \cup \left( {{e^{\pi \widehat i\left( {{ \bullet _\iota } - \frac{n}{2} + \frac{{\deg }}{2}} \right)}}} \right)\widetilde \Gamma {\left( {T\chi } \right)_v} \cdot \\\widetilde {ch}{\left( {{V_2}} \right)_{inv\left( v \right)}}\end{array}\]

which, by

    \[{\left( { - 1} \right)^n}{G^{\widehat S}}\left( {\left[ {{K_\chi }} \right]} \right)\]

is equal to

    \[\frac{1}{{{{\left( {2\pi } \right)}^n}}}{\sum\limits_{v \in \,T} {\int\limits_{{\chi _v}} {\left( {{e^{\pi \widehat i\rho }}\widetilde \Gamma {{\left( {T\chi } \right)}_{inv\left( v \right)}}{{\left( {2\pi \widehat i} \right)}^{\frac{{\deg }}{2}}}\widetilde {ch}{{\left( {{V_1}} \right)}_v}} \right)} } _v}\]

    \[ = \]

    \[\begin{array}{c}\left( {{{\rm Z}_K}\left( {{V_1}} \right),{{\rm Z}_K}\left( {{V_2}} \right)} \right) = \\{\left( {{e^{\pi \widehat i\rho }}\Psi \left( {{V_1}} \right),{e^{\pi \widehat i\mu }}\Psi \left( {{V_2}} \right)} \right)_{ORB}}\end{array}\]

and to

    \[\begin{array}{c}\frac{1}{{{{\left( {2\pi } \right)}^n}}}{\sum\limits_{v \in \,T} {\left( {2\pi \widehat i} \right)} ^{\dim {\chi _v}}}\int\limits_{{\chi _v}} {\prod\limits_{f,i} \Gamma } \cdot \\\left( {1 - \overline f + \frac{{{\delta _{v,f,i}}}}{{2\pi \widehat i}}} \right)\Gamma \cdot \\\left( {1 - f - \frac{{{\delta _{v,f,i}}}}{{2\pi \widehat i}}} \right){e^{\frac{\rho }{2}}}\widetilde {ch}{\left( {{V_1}} \right)_v} \cdot \\{e^{\pi \widehat i\left( {{ \bullet _\iota } - \frac{n}{2} + \frac{{\deg }}{2}} \right)}}\widetilde {ch}{\left( {{V_2}} \right)_{inv\left( v \right)}}\end{array}\]

and because the lattice \widetilde S{\left( \chi \right)_\mathbb{Z}} \subset \widetilde S\left( \chi \right) defines a \mathbb{Z}-local system {F_\mathbb{Z}} \to \cup \times {\mathbb{C}^ * } underlying the flat vector bundle \left( {F\left| {_{ \cup \, \times {\mathbb{C}^ * }},\nabla } \right.} \right) and given that \widetilde S{\left( \chi \right)_\mathbb{Z}} is invariant under the Galois action, the local system {F_\mathbb{Z}} \to \cup \times {\mathbb{C}^ * } descends to a local system over \left( { \cup /{H^2}\left( {\chi ,\mathbb{Z}} \right)} \right) \times {\mathbb{C}^ * }, hence it follows that the proof of the orbifold Riemann–Roch Theorem is complete.

Mathematics is the music of reason ~ James Joseph Sylvester