Sign up with your email address to be the first to know about new products, VIP offers, blog features & more.

Fano Manifolds, U-Duality, Quantum Cohomology and M-Theory

If you want to appreciate why Edward Witten is considered the greatest mathematical mind in physics since Newton, scroll to the end. In my last post, I defined the quantum algebraic connection form

    \[{\Omega ^h} = \sum\nolimits_{i = 1}^r {\Omega _i^h} d{t_i}\]

via

    \[\left\{ {\begin{array}{*{20}{c}}{\left[ {{{\not \partial }_i}{P_i}} \right] = \sum\nolimits_{k = 0}^s {{{\left( {\Omega _i^h} \right)}_{kj}}\left[ {{P_k}} \right]} }\\{\left[ {{b_i}{c_j}} \right]\sum\nolimits_{k = 0}^s {{{\left( {{\omega _i}} \right)}_{kj}}\left( {{c_k}} \right)} }\end{array}} \right.\]

and showed that h\,{\Omega ^h} is polynomial in h, so {\Omega ^h} is hence of the form

    \[{\Omega ^h} = \frac{1}{h}\omega + {\theta ^{\left( 0 \right)}} + h\,{\theta ^{\left( 0 \right)}} + ... + h{\theta ^{\left( p \right)}}\]

where

    \[\omega = \sum\nolimits_{i = 1}^r {{\omega _i}} d{t_i}\]

and {\theta ^{\left( 0 \right)}},...,{\theta ^{\left( p \right)}} are matrix-valued 1-forms, and p is a non-negative integer depending on the relations \left( {{{\widetilde {\not R}}_1},...,{{\widetilde {\not R}}_u}} \right).

and deduced that

    \[\nabla = d + {\Omega ^h}\]

is gauge equivalent to a connection

    \[\widehat \nabla = d\,{\widehat \Omega ^h}\]

with

    \[{\widehat \Omega ^h} = \frac{1}{h}\widehat \omega \]

    \[\widehat \omega = {Q_0}\omega Q_0^{ - 1}\]

for the holomorphic Dubrovin equivalence relation map

    \[{U_0}:{U_0} \to G{L_{s + 1}}\mathbb{C}\]

with L the Laurent expansionThe proof is given here.

In this post, I will work in the context of Fano manifolds to thread all my last few posts on quantum cohomology together in the context of U-duality in M-theory and hopefully Edward Witten‘s historic genius would be reflected in the context of M-theoretic compactification as derived from quantum-cohomological arguments. A Fano manifold is a Kähler manifold M whose Kähler 2form represents the first Chern class {c_1}M of the manifold and has a nicely-behaved quantum cohomology. Start with a deformation

    \[{\widetilde A_{QC}} = K\left[ {{b_1},...,{b_r}} \right]/\left( {{{\widetilde {\not R}}_i},...,{{\widetilde {\not R}}_u}} \right)\]

of the cohomology algebra

    \[{A^{QC}} = {H^*}M = \mathbb{C}\left[ {{b_1},...,{b_r}} \right]/\left( {{{\widetilde {\not R}}_i},...,{{\widetilde {\not R}}_u}} \right)\]

Now with flag manifolds and Fano toric manifolds, the connection form {\Omega ^h} satisfies \left| {{q_i}} \right| \ge 2, with {q_i} defined via

    \[{q_i}:t = \sum\nolimits_{j = 1}^r {{t_i}} {b_i}{ \to ^\dagger }{e^{{t_i}}}\]

Proposition: Assume that \Omega _1^h,...,\Omega _r^h are polynomial in {q_1},...,{q_r} with \left| {{q_1}} \right|,...,\left| {{q_r}} \right| \ge 4. Then

    \[{L_ + } = {Q_0}\left( {I + h{Q_1} + {h^2}{Q_2} + ...} \right)\]

satisfies

    \[\left\{ {\begin{array}{*{20}{c}}{{Q_0} = \exp X}\\{{X_{\alpha ,\beta }} = 0}\\{\alpha \ge \beta - 1}\end{array}} \right.\]

    \[\left\{ {\begin{array}{*{20}{c}}{i \ge 1}\\{{{\left( {{Q_i}} \right)}_{\alpha ,\beta }} = 0}\\{\alpha \ge \beta - i - 1}\end{array}} \right.\]

Hence, {Q_i} = 0, that is, {L_ + } is a polynomial in h

Proof: given that

    \[\begin{array}{c}h\,{\Omega ^h} = \omega + h{\theta ^{(0)}} + {h^2}{\theta ^{(1)}} + \\{h^{p + 1}}{\theta ^{(p)}}\end{array}\]

holds, it follows from the homogeneity and polynomiality properties that \theta _i^{(j)} satisfies

    \[\left\{ {\begin{array}{*{20}{c}}{{{\left( {\theta _i^{(j)}} \right)}_{\alpha ,\beta }}}\\{\alpha \ge \beta - j - 1}\end{array}} \right.\]

Therefore, {\Omega ^h} takes values in the Lie algebra consisting of loops of the form

    \[\sum\nolimits_{i \in \mathbb{Z}} {{h^i}} {\rm{ }}{\widetilde A_{QC}}\]

whose coefficients satisfy

    \[\left\{ {\begin{array}{*{20}{c}}{{{\left( {{{\widetilde A}_{QC}}} \right)}_{\alpha ,\beta }} = 0}\\{\alpha \ge \beta - i - 1}\end{array}} \right.\]

when i \ge 0 and

    \[\left\{ {\begin{array}{*{20}{c}}{{{\left( {{A_{QC}}} \right)}_{\alpha ,\beta }} = 0}\\{\alpha \ge \beta - i + 1}\end{array}} \right.\]

when i < 0. Hence L and {L_ - }, {L_ + } take values in the corresponding loop group. So

    \[{\left( {{L_ + }} \right)^{ - 1}}d{L_ + } = \sum\nolimits_{i \ge 0} {{h^i}} {\widetilde A_{QC}}^{\exp ({q_i})}\]

holds, where {\left( {{{\widetilde A}_{QC}}} \right)_{\alpha ,\beta }} = 0 for  \alpha \ge \beta - i - 1, from which the stated properties of {L_ + } follow, yielding Fano-Laurent identity

    \[\frac{1}{h}{Q_0}\omega Q_0^{ - 1}{L_ + } = {L_ + }{\Omega ^h} - d{L_ + }\]

which I will now link to U-Duality via the Kähler-Witten integral of M \equiv X

    \[\int_{{{\left[ {{X_{g,n.d}}} \right]}^{{\rm{vir}}}}} {\prod\limits_{k = 1}^{k = n} {{\rm{ev}}\,_k^ * } } \left( {{a_k}} \right) \cup \psi \,_k^{ik}\]

with {a_{1,...,}}{a_n} \in {H_X} and {\rm{e}}{{\rm{v}}_k}:{X_{g,n,d}} \to X being the evaluation map at the k-th marked point and {\psi _1},...,{\psi _n} \in {H^2}\left( {{X_{g,n,d}};\mathbb{Q}} \right) being the universal cotangent line classes. Now we can derive

    \[\left\langle {{a_1}\psi _1^{{i_1}},...,{a_n}\psi _n^{{i_n}}} \right\rangle \,_{g,n,d}^X = \int_{{{\left[ {{X_{g,n.d}}} \right]}^{{\rm{vir}}}}} {\prod\limits_{k = 1}^{k = n} {{\rm{ev}}{\mkern 1mu} _k^*} } \left( {{a_k}} \right) \cup \psi {\mkern 1mu} _k^{ik}\]

Realize first that M-theory includes not only strings but also D-branes in order to support compactification in braneworld-cosmology as well as algebraic-geometric D-orbifoidal, and topological reasons. What U-duality is in a deep sense, is a symmetry between strings and branes. Hence in the limit of small string coupling \lambda the second quantized string Hilbert space takes the form

    \[{{\rm H}^{Hil}}{S^ * }\left( {{{\rm H}^{Hil}}_{string}} \right) \otimes {S^ * }\left( {{{\rm H}^{Hil}}_{brane}} \right)\]

so U-duality allows, via

    \[{e^{\int_{{{\left[ {{X_{g,n.d}}} \right]}^{{\rm{vir}}}}} {{e^{{{\left( {\psi \left( {h\,{\Omega ^h}} \right)} \right)}^4}}}} }}\smallint \left[ {{X_{g,n.d}}} \right]{\rm{ e}}{{\rm{v}}_k}{e^{h\left( {{\Omega ^h}} \right)}}{\left( {\psi \,\left( \omega \right)} \right)^4}\]

a compactification of M-theory on a four-torus {\Gamma ^4} = {\mathbb{R}^4}/L, hence causally connecting with Einsteinian space-time due to charge lattice

    \[{\Upsilon ^{4,4}} \oplus {K^0}\left( {{\Gamma ^4}} \right)\]

having rank16, and so forms an irreducible spinor representation under the U-duality group SO\left( {4,4,\mathbb{Z}} \right) and the corresponding Fock space is given by

    \[{\widetilde {\not F}_q}\mathop \otimes \limits_{n = 0}^\infty {S_{{q^n}}}\left( {{\mathbb{R}^8}} \right) \otimes \wedge \mathop \oplus \limits_{N \ge 0} {q^N}\widetilde {\not F}\left( N \right)\]

So the Hilbert space of strings with momenta p \in {\Gamma ^{4,4}} has the form

    \[{{\rm H}^{Hil}}_{string}\left( p \right) = \widetilde {\not F}\left( {\frac{1}{2}{p^2}} \right)\]

with the cohomology of moduli spaces being

    \[\mathop \oplus \limits_{N \ge 0} {q^N}{{\rm{H}}^{Hil}}^{,\dagger }\left( {{{\widetilde {\rm{H}}}^{Hil}}_N\left( {{\Gamma ^4}} \right)} \right) = {\widetilde {\not F}_q}\]

noting the number 4, and by

    \[{e^{\int_{\left[ {{X_{g,n.d}}} \right]} {{\rm{vir}}} }}h{\widetilde A_{QC}}^{{e^{\left( {h{{\widetilde \Omega }^h}} \right)}}}\mathop \otimes \limits_{n = 0}^\infty {e^{\int_{\left[ {{X_{g,n.d}}} \right]} {{\rm{vir}}} }}{h^{{e^{{{\left( {\psi \left( \omega \right)} \right)}^4}}}}}\]

we get the 4-D-Witten compactificational projection of M-theory onto Einsteinian space-time as revealed by

    \[\begin{array}{c}{\widetilde {\rm H}^{Hil}}_{Brane}{\left( \mu \right)^4} = \widetilde {\not F}{\left( {{\mu ^2}/2} \right)^4} \cong \\{\widetilde {\rm H}^{Hil}}_{String}{\left( p \right)^4}\end{array}\]

    \[\begin{array}{c} \cong \\{F_{Fukaya}}\left( {{{\widetilde S}_{Einstein}}} \right)\end{array}\]

with {F_{Fukaya}}\left( {{{\widetilde S}_{Einstein}}} \right) the Fukaya category of the Einstein-symplectic space. Truly magical!

The study of mathematics, like the Nile, begins in minuteness but ends in magnificence ~ Charles Caleb Colton